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Abstract

The detection of surface defects in wood is crucial for enhancing product value and
manufacturing efficiency. Traditional methods exhibit inherent limitations in both
efficiency and robustness, whereas deep learning techniques offer innovative solutions
to these challenges. This paper provides a comprehensive review of the research
progress in this field, beginning with an overview of the evolution from convolutional
neural networks (CNNs) to object detection and image segmentation models, as well as
their adaptability in wood defect identification. It then focuses on the role of key
optimization strategies, such as attention mechanisms and multi-scale feature fusion, in
improving detection performance under complex textures. Finally, this paper highlights
future directions, including the integration of multimodal information, the development
of self-supervised learning, and the construction of end-to-end systems, all aimed at
providing forward-looking technological references for the intelligent upgrading of the
wood industry.
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1. INTRODUCTION

Wood, renowned for its renewability, biodegradability, and superior properties, is extensively
utilized in the production of furniture, architectural decorations, bridges, and structural
engineering applications. It serves as a vital green material in the pursuit of the "dual carbon"
strategic objectives. Wood products offer an environmentally sustainable alternative to high-
carbon materials such as steel and cement, positioning them as particularly promising within
the construction sector and contributing to long-term carbon sequestration efforts. As global
awareness of the role of wood in emission reduction expands, the wood industry—recognized
as a low-carbon sector—has gained increasing recognition [1].However, during processing,
transportation, and storage, wood frequently develops surface defects, including live knots, pith,
and dead knots. These defects not only diminish the aesthetic and commercial value of the wood
but also compromise its structural integrity, reduce its service life, and, in some cases, lead to
its disposal. Consequently, the development of precise and efficient wood defect detection
technologies is essential for advancing intelligent manufacturing and optimizing resource
utilization.
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Traditional detection methods primarily rely on manual visual inspection or algorithms
based on basic image features. For instance, the HOG+SVM classification method identifies
defects[2] by extracting edge and texture features, while threshold segmentation and grayscale
analysis detect defect[3] areas through grayscale variations. However, these methods share
several limitations: they are sensitive to lighting variations, struggle with complex textures,
depend on the operator's expertise, and lack robustness when detecting small or multi-class
defects. As industrial automation and intelligence demands increase, these traditional
techniques are inadequate in meeting the modern production requirements for high precision,
consistency, and real-time performance.

In recent years, deep learning techniques have substantially advanced wood defect detection.
Convolutional neural networks(CNNs)[4] automatically extract multi-level features, facilitating
end-to-end learning that enhances defect recognition accuracy and robustness. Faster R-CNN[5]
improves defect localization accuracy through region proposal networks, while the YOLO series
enables efficient real-time detection. Transformer-based models[6] enhance the modeling of
global context information. Additionally, optimization strategies such as feature pyramids,
multi-scale fusion, and attention mechanisms have further bolstered detection performance,
particularly for small defects in complex textured backgrounds. Lightweight networks and
transfer learning approaches have also improved the adaptability of models for deployment on
edge devices and in scenarios with limited sample sizes. Table 1 summarizes the key
distinctions between traditional and deep learning-based detection methods.

Table 1. Methods for Identifying Wood Defects in Images

Category Method Name Pr,([),?;S:d Advantages Disadvantages
BP Neural . Prone to overfitting,
Network 1986 Versatile, adaptable computationally intensive
RBF Neural Effective for small Struggles with large
1985 datasets, kernel
Network datasets o .
optimization challenging
Traditional Image
Recognition S\l;fcrig;‘t Strong generalization, Needs careful kernel
Methods Machine 1968 good for high- selection, expensive
(SVM) dimensional data optimization
Eé(;irirrlle Fast and simple, Requires large data
ns 2004 suitable for large ~ed ge cata,
Machine datasets limited generalization
(ELM)
Superior feature . .
CNN 1980s-1990s extraction, automatic High computational
. demand
learning
Convolutional Combines CNN and Com .
i . plex preprocessing,
Neural Network R-CNN 2014 RPN for precise resource-intensive
-based detection
Recognition Efficient and accurate Requires labeled data,
Methods Faster R-CNN 2015 with RPN integration may not generalize well
Struggles with
SSD 2016 Balances.accuracy and generalization in complex
real-time speed
datasets




World Scientific Research Journal Volume 11 Issue 10,2025
ISSN: 2472-3703 DOI: 10.6911/WSR]J.202510_11(10).0008

Despite significant progress, wood defect detection still faces numerous challenges, including
imbalanced defect sample distribution, complex natural textures, significant interference from
lighting and background, and the stringent requirements of real-time performance and
lightweight solutions in industrial applications. This paper provides a comprehensive review of
deep learning-based methods for wood defect detection, analyzing them from three dimensions:
methodological framework, optimization strategies, and practical applications. Furthermore, it
identifies the research bottlenecks and development trends. The paper is organized as follows:
Chapter 2 introduces deep learning-based surface defect detection methods and key
optimization strategies; Chapter 3 discusses the current challenges and future research
directions.

2. SURFACE DEFECT DETECTION METHODS BASED ON DEEP LEARNING
2.1.Traditional Methods and Limitations in Surface Defect Detection

Before the widespread application of deep learning technologies, wood surface defect
detection primarily relied on two methods: manual visual inspection and traditional machine[7]
vision algorithms. Manual visual inspection is typically performed by experienced inspectors
under specific lighting conditions, who observe the wood surface to identify and assess defects.
The effectiveness of this method is highly dependent on the inspector's expertise and physical
condition. It is often characterized by inefficiency, high labor intensity, strong subjectivity, and
susceptibility to fatigue, making it difficult to meet the modern production line's demands for
efficiency and consistency.

Traditional machine vision methods[7] aim to reduce reliance on manual inspection through
automation. The typical process includes image acquisition and preprocessing, feature
engineering, and classifier design. In the feature engineering stage, researchers often rely on
hand-crafted texture features (e.g., gray-level co-occurrence matrix, local binary pattern [LBP]),
shape features (e.g., edges, contours, Hu moments), and statistical features (e.g., color moments,
gradient histograms). These features are then input into classifiers such as support vector
machines (SVM), decision trees, or k-nearest neighbors (K-NN) for defect detection.

Although these methods have shown some success in controlled experimental environments,
their limitations remain significant. Hand-crafted features have limited expressiveness and
struggle to effectively capture the complex and variable natural textures of wood. They are
sensitive to lighting, noise, and viewing angle, with poor robustness. Furthermore, their ability
to detect small defects (e.g., insect holes or microcracks) is limited, resulting in a high false-
negative rate. Additionally, these methods are dependent on prior knowledge and manual
design, leading to long development cycles and poor portability, making them unsuitable for
different wood species or novel defects.

2.2.Fundamental Theories and Core Models of Deep Learning

2.2.1 Basic Principles of Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)[4] are the core model of deep learning in the field of
image processing. They effectively handle high-dimensional image data by employing
mechanisms such as local connections, weight sharing, and spatial downsampling, while also
providing translation invariance. A typical CNN architecture consists of an input layer,
convolutional layers, activation functions, pooling layers, and fully connected layers, as shown
in Figurel. Convolutional layers extract local features by sliding a set of learnable kernels over
the input image. Shallow networks capture basic features such as edges, corners, and textures,
while deeper networks can capture more abstract and semantic features. Activation functions
introduce non-linear transformations, enabling the network to model complex mappings.
Among them, ReLU and its variants are widely used due to their ability to mitigate the vanishing
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gradient problem. Pooling layers reduce the spatial resolution of feature maps, expand the
receptive field, and enhance the robustness of features to positional variations. Fully connected
layers map high-dimensional features to target classes, performing the final classification or
regression tasks. Batch Normalization accelerates model training and provides a regularization
effect, while Dropout mitigates overfitting by randomly deactivating neurons. CNNs can
autonomously learn the intrinsic features of wood defects, overcoming the reliance on manual
feature engineering typical of traditional methods.

C1
6@28%28 c2 C5 F5 Output
Input ' ] S2 6@10x10 sS4 120 84 10

e
% ‘ e — /\/— GaLan

Convolutional Pooling Convolutional Pooling Fully Connection

Layer Layer Layer Layer Connected
Layer

Figure 1. Schematic Representation of the CNN Architecture

2.2.2 Evolution of Mainstream Deep Learning Architectures

With the continuous advancement of deep learning theories, Convolutional Neural Network
(CNN) architectures have evolved from shallow networks to deep networks, transitioning from
general-purpose models to specialized architectures tailored for specific tasks. This evolution
has significantly propelled the development of computer vision. In wood defect detection, these
networks typically serve as the backbone for feature extraction, providing high-quality deep
features that support subsequent classification or detection tasks.

VGGNet[8], by stacking multiple small convolution kernels (3X3) instead of using a single
large kernel (e.g., 5 X5 or 7 X 7), effectively controls the number of parameters while increasing
the depth of the network. [ts modular structure not only facilitates network design, transfer, and
fine-tuning but also enables shallow convolutions to capture low-level features such as edges
and textures, while deeper convolutions progressively extract higher-level semantic
information. This structure enhances the model's ability to represent complex texture defects.

ResNet[9], by introducing residual modules, significantly alleviates the vanishing gradient
problem in deep networks, making it possible to train networks with tens or even hundreds of
layers, as illustrated in Figure 2. This powerful deep representation capability is crucial for
learning and distinguishing defects with features similar to the natural wood texture (e.g., light
cracks and wood grains).

When considering real-time industrial detection or deployment on mobile or embedded
devices, lightweight networks (e.g., MobileNet[10] and ShuffleNet[11]) employ mechanisms
like depthwise separable convolutions and channel shuffling to significantly reduce
computational complexity while maintaining accuracy. These networks provide feasible
solutions for deployment on embedded devices. Moreover, they not only reduce memory usage
and latency but also integrate with model optimization techniques such as quantization and
pruning, further accelerating computation. This makes them viable for large-scale wood defect
detection and online quality control. Additionally, their multi-layer feature representation
capabilities enable the simultaneous recognition of small defects and complex texture areas,
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offering stable and reliable feature input for subsequent object detection and segmentation
tasks.
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Figure 2. Schematic of the ResNet Network Architecture

2.2.3 From Classification to Detection: Object Detection Algorithm Framework

The task of object detection not only involves identifying the type of defects within an image
but also requires precise localization of these defects in the spatial domain. In the field of deep
learning, object detection algorithms are typically divided into two main categories: two-stage
detectors and one-stage detectors.

Two-stage detectors, such as Faster R-CNN|[5], are characterized by a core process that
includes candidate region generation and region classification regression. Specifically, the
Region Proposal Network (RPN) first generates numerous candidate boxes (anchors) on the
input feature map, which are likely to contain the target. These redundant, highly overlapping
candidate boxes are then filtered through non-maximum suppression (NMS). Subsequently,
each candidate region is cropped and passed through the subsequent network for category
prediction and bounding box regression optimization. In the context of wood defect detection,
due to the complexity of defect shapes and significant size variations, researchers typically fine-
tune the anchor box scales, ratios, and densities in the RPN to improve coverage of small defects
(such as micro-cracks, insect holes, and localized decay). Additionally, the integration of a
Feature Pyramid Network (FPN) allows the fusion of deep semantic information with shallow
details, enabling the model to effectively respond to both large and small defects, thereby
enhancing recall rates and localization accuracy across multiple scales.

In contrast, one-stage detectors, such as the YOLO series and SSD, simplify the object
detection task by combining category prediction and bounding box regression into a unified
model, eliminating the need for a candidate region generation step. This significantly boosts
detection speed. In wood industry applications, YOLOv5[12] leverages adaptive anchor box
computation, multi-scale training, random flipping, color perturbation, and an adaptive [oU loss
function, which ensures high generalization ability in complex textured backgrounds and
improves the accuracy of small-object detection. YOLOv8[13] incorporates an anchor-free
design that directly predicts the center and dimensions of the target, thereby reducing
dependence on prior anchor boxes. Combined with modules such as CSP and BiFPN, this design
facilitates cross-scale feature fusion, preserving localization accuracy while improving
inference speed. As a result, YOLOvVS is particularly effective for high-speed image processing in
production lines and real-time wood defect detection, as demonstrated in Figure 3 Basic
Structure of YOLOvS. This architecture enhances both localization and speed, making it highly
suitable for industrial applications.
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Figure 3. Basic Structure of YOLOv8
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2.2.4 From Coarse to Fine: Semantic Segmentation and Instance Segmentation

In wood surface defect detection, many defects exhibit irregular shapes, complex boundaries,
small sizes, and dense distributions. Traditional bounding box detection methods, which rely
on approximate rectangular frames, struggle to capture the fine morphological details of defects
accurately. This is particularly problematic when detecting small targets such as cracks, decay,
discoloration, or insect holes, often resulting in missed or false detections. As a result, semantic
segmentation [14] and instance segmentation [15] have become key techniques for improving
detection accuracy, with a comparison of the two provided in Table 2.

Semantic segmentation aims to predict the category of each pixel in an image, labeling all
pixels of the same class, but it cannot distinguish boundaries between objects of the same class.
In wood defect detection, semantic segmentation enables pixel-level localization of defect
regions by capturing defect contours and texture details, thereby enhancing the model's ability
to perceive complex defect shapes. A typical network, such as U-Net, uses a symmetric encoder-
decoder architecture. The encoder progressively extracts multi-scale features and compresses
spatial information through multiple layers of convolution and pooling, while retaining high-
level semantic representations. The decoder restores spatial resolution through upsampling
and combines low-level details from the encoder using skip connections, achieving high-
precision pixel-level predictions.

Instance segmentation builds upon semantic segmentation by further distinguishing
individual objects within the same class, allowing for the independent segmentation of dense
or adjacent defects. Mask R-CNN, a representative method for instance segmentation, extends
the Faster R-CNN[5] framework by adding a mask prediction branch. It generates candidate
bounding boxes through a region proposal network, then classifies, regresses boundaries, and
predicts pixel-level masks for each candidate box to achieve fine-grained object-level
segmentation. By combining multi-scale feature maps and RolAlign operations, Mask R-CNN
improves the model's response to defects of varying sizes, ensuring spatial accuracy for small
and dense targets. This significantly alleviates the limitations of traditional bounding box
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methods in segmentation accuracy and small target recognition, providing effective technical
support for high-precision wood defect detection.

Table 2. Comparison of Common Segmentation Techniques for Wood Defect Detection

Segmentation  Related

Task Type Models Core Methodology Advantages Disadvantages
The encoder extracts re?iﬁcl)ln in Struggles to
features and the decoder precisior distinguish
. localization, .
Semantic restores the resolution by simple boundaries
Seementation U-Net upsampling, with high- struc?ure between similar
& level feature fusion effective f(;r objects and is
achieved through skip small sensitive to edge
connections. distortions.
samples.
Based on Faster R-CNN, Can seement Hich
Mask R-CNN adds a mask . 5 51
prediction branch and uses instances of computational
Region Proposal Networks th:lsgéne ll\?‘ag’- ;S;\lll:zl;?ci
Instance Mask R- (RPN) to generate accurate’ for h? h-qualit
Segmentation CNN candidate bounding boxes, dense dat ag ar? dis IZss
followed by classification, g
bounding box regression targetsand effective on small
and pixel-level mask small target .
defects. segmentation.

prediction.

2.3.Key Optimization Strategies for Enhancing Detection Performance

Wood surface defect detection faces several challenges, including significant variations in
target size, complex textures, strong background interference, and the high real-time
performance demands of industrial environments. Defects typically occupy a small proportion
of the image and are highly similar to the background texture, making it difficult for traditional
convolutional networks to effectively extract features, which often leads to reduced accuracy in
identifying small or low-contrast defects. To improve detection performance, researchers have
proposed several strategies, including attention mechanisms, multi-scale feature fusion, model
lightweighting, and data augmentation and transfer learning under small sample conditions.

The attention mechanism mimics human visual selective focus, enabling the network to
assign higher weights to key regions and important features, thereby enhancing feature
representation. Channel attention mechanisms, such as SENet, highlight high-information
channels through global information aggregation and weight learning, while suppressing low-
information channels. Spatial attention mechanisms generate spatial weight matrices to
emphasize defect locations. Hybrid attention mechanisms, such as CBAM, combine channel and
spatial attention to optimize feature representation across both dimensions. Coordinate
attention further encodes horizontal and vertical position information, capturing long-range
dependencies while preserving precise location information, making it particularly effective for
detecting small, sparse defects (e.g., knots, insect holes, and cracks), and can be integrated with
lightweight or efficient detection models.
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Wood surface defects exhibit a large size variation, making it difficult for single-scale feature
maps to effectively capture both small targets and large defects. Feature Pyramid Networks
(FPN), through top-down paths and lateral connections, fuse deep high-semantic features with
shallow high-resolution features, preserving both semantic information and spatial details.
Shallow features aid in capturing the textures of small defects, while deep features provide
semantic understanding of larger defects. Bidirectional Feature Pyramid Networks (BiFPN)
build on this by introducing cross-scale weighted fusion, enabling bidirectional information
flow and feature aggregation through learnable weights, which enhances the discernibility of
small targets while suppressing shallow noise interference. The network structure of the
feature fusion module is illustrated in Figure 4.
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Figure 4. Network Structure of Feature Fusion Modules

In industrial applications,deploymen is often constrained by computational resources. As a
result, model compactness and inference speed become critical factors. Lightweight networks
reduce computational complexity effectively through strategies such as replacing the backbone
network, employing depthwise separable convolutions, and using channel shuffling. Network
pruning removes redundant connections, quantization lowers the precision of weights and
activations, and knowledge distillation trains the student model with guidance from a teacher
model. These techniques enable lightweight models to maintain compact size while
approximating the original performance, facilitating efficient real-time deployment.

Moreover, deep learning methods heavily rely on large-scale data, while the number of wood
defect samples is limited. Solutions include traditional data augmentation techniques (e.g.,
rotation, flipping, scaling, cropping, color jittering, noise addition), generating defect images
using Generative Adversarial Networks (GANs), and employing transfer learning. Transfer
learning transfers features learned from pre-trained models on large datasets (e.g., ImageNet)
to the wood defect detection task, followed by fine-tuning to achieve high-performance training
under small sample conditions. The integration of these approaches significantly enhances the
accuracy, robustness, and industrial applicability of wood surface defect detection.

2.4.Summary

This chapter provides a comprehensive review of the theoretical framework for surface
defect detection based on deep learning. First, it discusses the limitations of traditional methods
and emphasizes the necessity of incorporating deep learning. Next, it presents the foundational
principles of convolutional neural networks (CNNs) and their applications in wood defect
detection, including object detection, semantic segmentation, and instance segmentation
models. Finally, key techniques for enhancing model performance are summarized, such as
attention mechanisms, multi-scale feature fusion, model lightweighting, and optimization
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strategies for scenarios with limited data. This theoretical framework provides a solid
foundation for subsequent research, which aims to address practical challenges such as
complex texture backgrounds, small target defects, and real-time detection.

3. CHALLENGES AND PROSPECTS

Despite the significant progress made by deep learning in the detection of wood surface
defects, several challenges remain in achieving industrial-scale application. This chapter
provides a systematic analysis of the key issues in current research and explores future
development trends.

3.1.Major Challenges in Current Wood Defect Detection

Although deep learning has achieved notable progress in the detection of wood surface
defects, it still faces multiple challenges in industrial applications, hindering its widespread
implementation in intelligent manufacturing and industrial production. First, the lack of high-
quality data remains a core bottleneck limiting model performance. The uneven distribution of
wood defects—common defects such as knots account for more than 60% of defects, while
critical defects like micro-cracks and insect holes comprise less than 5% —results in a
significant reduction in the model's ability to recognize minority class defects. Additionally, the
annotation process heavily relies on manual expertise, which is costly and lacks standardization,
further limiting the construction of large-scale datasets and model training. Current mitigation
strategies include traditional data augmentation, the use of Generative Adversarial Networks
(GANSs) to generate synthetic defect images, and transfer learning to leverage feature knowledge
from other industrial domains. However, these methods still struggle to fully address the class
imbalance problem, with detection performance for minority classes remaining limited. Future
efforts should focus on building large-scale, multi-species, standardized datasets, promoting
cross-domain data sharing, and exploring innovative sample generation methods based on
diffusion models to meet the diverse defect detection needs of industrial environments.

[llumination variations, surface reflections, and complex background interference
significantly affect the model’ s generalization ability in industrial settings. Research shows
that model performance can degrade by more than 25% in different scenarios, primarily due to
over-reliance on domain-sensitive features. Existing methods attempt to improve robustness
through domain adaptation and attention mechanisms, but they still face difficulties in feature
decoupling in complex textured backgrounds. Potential solutions include developing domain-
invariant feature learning architectures based on vision transformers, creating data
augmentation strategies that incorporate physical priors, and establishing standardized testing
benchmarks that cover multiple devices and environments to enhance model adaptability and
reliability in heterogeneous industrial environments.

Detecting minor defects also presents a critical challenge. Studies show that when defect
areas occupy less than 0.1% of the image, the model’ s recall rate significantly declines. While
multi-scale feature fusion techniques can improve the response to small targets, they incur high
computational costs, making it difficult to balance accuracy with real-time performance. To
address this, researchers have attempted to incorporate super-resolution reconstruction
techniques to enhance detail perception, use hierarchical attention mechanisms to suppress
background interference, and build hybrid architectures based on CNNs and transformers for
collaborative modeling of local and global features. Additionally, improvements such as
adaptive receptive field mechanisms and lightweight feature pyramid networks can enhance
the detection of small defects while maintaining real-time performance, thus meeting the high
precision requirements in complex textured environments.
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Industrial applications also have stringent demands for real-time processing and model
efficiency. Typically, the processing time for a single image needs to be under 100 ms, yet
existing lightweight networks exhibit a significant decline in accuracy when compression rates
exceed 40%. Optimization approaches include structured pruning, quantization, knowledge
distillation, and neural architecture search. Combining edge computing with cloud
collaboration, along with algorithm and hardware co-optimization, will contribute to efficient
inference and meet the comprehensive requirements for speed, stability, and resource
consumption in high-output production lines.

3.2.Future Development Trends and Technological Directions

The future progress of wood surface defect detection will exhibit a trend of multidimensional
integration and system optimization. At the data level, multimodal information fusion will be a
key approach to enhance the model's perceptual ability. RGB images provide texture and color
information, infrared imaging detects internal material temperature and potential defect
signals, and depth images offer structural and geometric features. Multimodal collaborative
modeling can significantly enhance defect detection robustness, especially in industrial
environments with varying lighting conditions or strong surface reflections. Additionally, self-
supervised learning and few-shot learning strategies can extract useful features under limited
labeled data conditions, reducing labor costs and improving model adaptability to new tree
species or environments.

At the algorithmic level, deep learning networks are evolving towards stronger feature
modeling capabilities and global information perception. Vision Transformers and their
derivatives enable long-range dependency feature modeling, effectively capturing the global
correlation between complex wood surface textures and subtle defects. Hybrid architectures
combining CNNs and Transformers provide collaborative representations of local details and
global context, improving model stability in detecting small defects and complex backgrounds.
Techniques such as multi-scale feature fusion, attention mechanisms, and adaptive receptive
fields will continue to be optimized to address challenges such as large defect size variation,
complex textures, and strong background interference, achieving high-precision recognition of
various defect types, including micro-cracks, wormholes, knots, and decay. Algorithm
lightweighting and model compression technologies will ensure real-time deployment on edge
devices and industrial production lines, balancing accuracy and processing efficiency.

At the system level, end-to-end intelligent inspection pipelines will gradually integrate the
complete process from image acquisition, preprocessing, and defect recognition to
explainability analysis, enabling automation and transparency in industrial quality control. The
integration of cloud and edge computing architectures will facilitate large-scale data processing
and real-time detection, meeting the speed and stability requirements of high-throughput
production lines. Furthermore, cross-domain knowledge transfer, multimodal information
sharing, and algorithm-hardware co-optimization are expected to further enhance model
generalization capabilities, providing reliable data support for industrial decision-making. With
the continuous evolution of deep learning algorithms, the proliferation of computational
resources, and the growing demand for industrial applications, wood surface defect detection
is poised to transition from laboratory research to industrial application, providing solid
technical support for smart manufacturing and the green building materials industry.
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