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Abstract	
The	detection	of	 surface	defects	 in	wood	 is	 crucial	 for	 enhancing	product	 value	 and	
manufacturing	 efficiency.	 Traditional	 methods	 exhibit	 inherent	 limitations	 in	 both	
efficiency	and	robustness,	whereas	deep	learning	techniques	offer	innovative	solutions	
to	 these	 challenges.	 This	 paper	 provides	 a	 comprehensive	 review	 of	 the	 research	
progress	in	this	field,	beginning	with	an	overview	of	the	evolution	from	convolutional	
neural	networks	(CNNs)	to	object	detection	and	image	segmentation	models,	as	well	as	
their	 adaptability	 in	 wood	 defect	 identification.	 It	 then	 focuses	 on	 the	 role	 of	 key	
optimization	strategies,	such	as	attention	mechanisms	and	multi‐scale	feature	fusion,	in	
improving	detection	performance	under	complex	textures.	Finally,	this	paper	highlights	
future	directions,	including	the	integration	of	multimodal	information,	the	development	
of	 self‐supervised	 learning,	 and	 the	 construction	of	 end‐to‐end	 systems,	 all	 aimed	 at	
providing	forward‐looking	technological	references	for	the	intelligent	upgrading	of	the	
wood	industry.	
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1. INTRODUCTION	
Wood, renowned for its renewability, biodegradability, and superior properties, is extensively 

utilized in the production of furniture, architectural decorations, bridges, and structural 
engineering applications. It serves as a vital green material in the pursuit of the "dual carbon" 
strategic objectives. Wood products offer an environmentally sustainable alternative to high-
carbon materials such as steel and cement, positioning them as particularly promising within 
the construction sector and contributing to long-term carbon sequestration efforts. As global 
awareness of the role of wood in emission reduction expands, the wood industry—recognized 
as a low-carbon sector—has gained increasing recognition [1].However, during processing, 
transportation, and storage, wood frequently develops surface defects, including live knots, pith, 
and dead knots. These defects not only diminish the aesthetic and commercial value of the wood 
but also compromise its structural integrity, reduce its service life, and, in some cases, lead to 
its disposal. Consequently, the development of precise and efficient wood defect detection 
technologies is essential for advancing intelligent manufacturing and optimizing resource 
utilization. 
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Traditional detection methods primarily rely on manual visual inspection or algorithms 
based on basic image features. For instance, the HOG+SVM classification method identifies 
defects[2] by extracting edge and texture features, while threshold segmentation and grayscale 
analysis detect defect[3] areas through grayscale variations. However, these methods share 
several limitations: they are sensitive to lighting variations, struggle with complex textures, 
depend on the operator's expertise, and lack robustness when detecting small or multi-class 
defects. As industrial automation and intelligence demands increase, these traditional 
techniques are inadequate in meeting the modern production requirements for high precision, 
consistency, and real-time performance. 

In recent years, deep learning techniques have substantially advanced wood defect detection. 
Convolutional neural networks(CNNs)[4] automatically extract multi-level features, facilitating 
end-to-end learning that enhances defect recognition accuracy and robustness. Faster R-CNN[5] 
improves defect localization accuracy through region proposal networks, while the YOLO series 
enables efficient real-time detection. Transformer-based models[6] enhance the modeling of 
global context information. Additionally, optimization strategies such as feature pyramids, 
multi-scale fusion, and attention mechanisms have further bolstered detection performance, 
particularly for small defects in complex textured backgrounds. Lightweight networks and 
transfer learning approaches have also improved the adaptability of models for deployment on 
edge devices and in scenarios with limited sample sizes. Table 1 summarizes the key 
distinctions between traditional and deep learning-based detection methods. 

 
Table	1. Methods for Identifying Wood Defects in Images 

Category Method Name Proposed 
Time 

Advantages Disadvantages 

Traditional Image 
Recognition 

Methods 

BP Neural 
Network 

1986 Versatile, adaptable Prone to overfitting, 
computationally intensive 

RBF Neural 
Network 1985 

Effective for small 
datasets 

Struggles with large 
datasets, kernel 

optimization challenging 

Support 
Vector 

Machine 
(SVM) 

1968 
Strong generalization, 

good for high-
dimensional data 

Needs careful kernel 
selection, expensive 

optimization  

Extreme 
Learning 
Machine 

(ELM) 

2004 
Fast and simple, 
suitable for large 

datasets 

Requires large data, 
limited generalization 

Convolutional 
Neural Network 

-based 
Recognition 

Methods 

CNN 1980s-1990s 
Superior feature 

extraction, automatic 
learning 

High computational 
demand 

R-CNN 2014 
Combines CNN and 

RPN for precise 
detection 

Complex preprocessing, 
resource-intensive 

Faster R-CNN 2015 Efficient and accurate 
with RPN integration 

Requires labeled data, 
may not generalize well 

SSD 2016 
Balances accuracy and 

real-time speed 

Struggles with 
generalization in complex 

datasets 
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Despite significant progress, wood defect detection still faces numerous challenges, including 
imbalanced defect sample distribution, complex natural textures, significant interference from 
lighting and background, and the stringent requirements of real-time performance and 
lightweight solutions in industrial applications. This paper provides a comprehensive review of 
deep learning-based methods for wood defect detection, analyzing them from three dimensions: 
methodological framework, optimization strategies, and practical applications. Furthermore, it 
identifies the research bottlenecks and development trends. The paper is organized as follows: 
Chapter 2 introduces deep learning-based surface defect detection methods and key 
optimization strategies; Chapter 3 discusses the current challenges and future research 
directions. 

2. SURFACE	DEFECT	DETECTION	METHODS	BASED	ON	DEEP	LEARNING	

2.1. Traditional	Methods	and	Limitations	in	Surface	Defect	Detection	

Before the widespread application of deep learning technologies, wood surface defect 
detection primarily relied on two methods: manual visual inspection and traditional machine[7] 
vision algorithms. Manual visual inspection is typically performed by experienced inspectors 
under specific lighting conditions, who observe the wood surface to identify and assess defects. 
The effectiveness of this method is highly dependent on the inspector's expertise and physical 
condition. It is often characterized by inefficiency, high labor intensity, strong subjectivity, and 
susceptibility to fatigue, making it difficult to meet the modern production line's demands for 
efficiency and consistency. 

Traditional machine vision methods[7] aim to reduce reliance on manual inspection through 
automation. The typical process includes image acquisition and preprocessing, feature 
engineering, and classifier design. In the feature engineering stage, researchers often rely on 
hand-crafted texture features (e.g., gray-level co-occurrence matrix, local binary pattern [LBP]), 
shape features (e.g., edges, contours, Hu moments), and statistical features (e.g., color moments, 
gradient histograms). These features are then input into classifiers such as support vector 
machines (SVM), decision trees, or k-nearest neighbors (K-NN) for defect detection. 

Although these methods have shown some success in controlled experimental environments, 
their limitations remain significant. Hand-crafted features have limited expressiveness and 
struggle to effectively capture the complex and variable natural textures of wood. They are 
sensitive to lighting, noise, and viewing angle, with poor robustness. Furthermore, their ability 
to detect small defects (e.g., insect holes or microcracks) is limited, resulting in a high false-
negative rate. Additionally, these methods are dependent on prior knowledge and manual 
design, leading to long development cycles and poor portability, making them unsuitable for 
different wood species or novel defects. 

2.2. Fundamental	Theories	and	Core	Models	of	Deep	Learning	

2.2.1 Basic Principles of Convolutional Neural Networks (CNNs) 
Convolutional Neural Networks (CNNs)[4] are the core model of deep learning in the field of 

image processing. They effectively handle high-dimensional image data by employing 
mechanisms such as local connections, weight sharing, and spatial downsampling, while also 
providing translation invariance. A typical CNN architecture consists of an input layer, 
convolutional layers, activation functions, pooling layers, and fully connected layers, as shown 
in Figure1. Convolutional layers extract local features by sliding a set of learnable kernels over 
the input image. Shallow networks capture basic features such as edges, corners, and textures, 
while deeper networks can capture more abstract and semantic features. Activation functions 
introduce non-linear transformations, enabling the network to model complex mappings. 
Among them, ReLU and its variants are widely used due to their ability to mitigate the vanishing 
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gradient problem. Pooling layers reduce the spatial resolution of feature maps, expand the 
receptive field, and enhance the robustness of features to positional variations. Fully connected 
layers map high-dimensional features to target classes, performing the final classification or 
regression tasks. Batch Normalization accelerates model training and provides a regularization 
effect, while Dropout mitigates overfitting by randomly deactivating neurons. CNNs can 
autonomously learn the intrinsic features of wood defects, overcoming the reliance on manual 
feature engineering typical of traditional methods. 

 

 
Figure	1.	Schematic Representation of the CNN Architecture 

 
2.2.2 Evolution of Mainstream Deep Learning Architectures 
With the continuous advancement of deep learning theories, Convolutional Neural Network 

(CNN) architectures have evolved from shallow networks to deep networks, transitioning from 
general-purpose models to specialized architectures tailored for specific tasks. This evolution 
has significantly propelled the development of computer vision. In wood defect detection, these 
networks typically serve as the backbone for feature extraction, providing high-quality deep 
features that support subsequent classification or detection tasks. 

VGGNet[8], by stacking multiple small convolution kernels (3×3) instead of using a single 
large kernel (e.g., 5×5 or 7×7), effectively controls the number of parameters while increasing 
the depth of the network. Its modular structure not only facilitates network design, transfer, and 
fine-tuning but also enables shallow convolutions to capture low-level features such as edges 
and textures, while deeper convolutions progressively extract higher-level semantic 
information. This structure enhances the model's ability to represent complex texture defects. 

ResNet[9], by introducing residual modules, significantly alleviates the vanishing gradient 
problem in deep networks, making it possible to train networks with tens or even hundreds of 
layers, as illustrated in Figure 2. This powerful deep representation capability is crucial for 
learning and distinguishing defects with features similar to the natural wood texture (e.g., light 
cracks and wood grains). 

When considering real-time industrial detection or deployment on mobile or embedded 
devices, lightweight networks (e.g., MobileNet[10] and ShuffleNet[11]) employ mechanisms 
like depthwise separable convolutions and channel shuffling to significantly reduce 
computational complexity while maintaining accuracy. These networks provide feasible 
solutions for deployment on embedded devices. Moreover, they not only reduce memory usage 
and latency but also integrate with model optimization techniques such as quantization and 
pruning, further accelerating computation. This makes them viable for large-scale wood defect 
detection and online quality control. Additionally, their multi-layer feature representation 
capabilities enable the simultaneous recognition of small defects and complex texture areas, 
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offering stable and reliable feature input for subsequent object detection and segmentation 
tasks. 

 
 

 
Figure	2. Schematic of the ResNet Network Architecture 

 
2.2.3 From Classification to Detection: Object Detection Algorithm Framework 
The task of object detection not only involves identifying the type of defects within an image 

but also requires precise localization of these defects in the spatial domain. In the field of deep 
learning, object detection algorithms are typically divided into two main categories: two-stage 
detectors and one-stage detectors. 

Two-stage detectors, such as Faster R-CNN[5], are characterized by a core process that 
includes candidate region generation and region classification regression. Specifically, the 
Region Proposal Network (RPN) first generates numerous candidate boxes (anchors) on the 
input feature map, which are likely to contain the target. These redundant, highly overlapping 
candidate boxes are then filtered through non-maximum suppression (NMS). Subsequently, 
each candidate region is cropped and passed through the subsequent network for category 
prediction and bounding box regression optimization. In the context of wood defect detection, 
due to the complexity of defect shapes and significant size variations, researchers typically fine-
tune the anchor box scales, ratios, and densities in the RPN to improve coverage of small defects 
(such as micro-cracks, insect holes, and localized decay). Additionally, the integration of a 
Feature Pyramid Network (FPN) allows the fusion of deep semantic information with shallow 
details, enabling the model to effectively respond to both large and small defects, thereby 
enhancing recall rates and localization accuracy across multiple scales. 

In contrast, one-stage detectors, such as the YOLO series and SSD, simplify the object 
detection task by combining category prediction and bounding box regression into a unified 
model, eliminating the need for a candidate region generation step. This significantly boosts 
detection speed. In wood industry applications, YOLOv5[12] leverages adaptive anchor box 
computation, multi-scale training, random flipping, color perturbation, and an adaptive IoU loss 
function, which ensures high generalization ability in complex textured backgrounds and 
improves the accuracy of small-object detection. YOLOv8[13] incorporates an anchor-free 
design that directly predicts the center and dimensions of the target, thereby reducing 
dependence on prior anchor boxes. Combined with modules such as CSP and BiFPN, this design 
facilitates cross-scale feature fusion, preserving localization accuracy while improving 
inference speed. As a result, YOLOv8 is particularly effective for high-speed image processing in 
production lines and real-time wood defect detection, as demonstrated in Figure 3 Basic 
Structure of YOLOv8. This architecture enhances both localization and speed, making it highly 
suitable for industrial applications. 
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Figure	3.	Basic Structure of YOLOv8 

 
2.2.4 From Coarse to Fine: Semantic Segmentation and Instance Segmentation 
In wood surface defect detection, many defects exhibit irregular shapes, complex boundaries, 

small sizes, and dense distributions. Traditional bounding box detection methods, which rely 
on approximate rectangular frames, struggle to capture the fine morphological details of defects 
accurately. This is particularly problematic when detecting small targets such as cracks, decay, 
discoloration, or insect holes, often resulting in missed or false detections. As a result, semantic 
segmentation [14] and instance segmentation [15] have become key techniques for improving 
detection accuracy, with a comparison of the two provided in Table 2. 

Semantic segmentation aims to predict the category of each pixel in an image, labeling all 
pixels of the same class, but it cannot distinguish boundaries between objects of the same class. 
In wood defect detection, semantic segmentation enables pixel-level localization of defect 
regions by capturing defect contours and texture details, thereby enhancing the model's ability 
to perceive complex defect shapes. A typical network, such as U-Net, uses a symmetric encoder-
decoder architecture. The encoder progressively extracts multi-scale features and compresses 
spatial information through multiple layers of convolution and pooling, while retaining high-
level semantic representations. The decoder restores spatial resolution through upsampling 
and combines low-level details from the encoder using skip connections, achieving high-
precision pixel-level predictions. 

Instance segmentation builds upon semantic segmentation by further distinguishing 
individual objects within the same class, allowing for the independent segmentation of dense 
or adjacent defects. Mask R-CNN, a representative method for instance segmentation, extends 
the Faster R-CNN[5] framework by adding a mask prediction branch. It generates candidate 
bounding boxes through a region proposal network, then classifies, regresses boundaries, and 
predicts pixel-level masks for each candidate box to achieve fine-grained object-level 
segmentation. By combining multi-scale feature maps and RoIAlign operations, Mask R-CNN 
improves the model's response to defects of varying sizes, ensuring spatial accuracy for small 
and dense targets. This significantly alleviates the limitations of traditional bounding box 
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methods in segmentation accuracy and small target recognition, providing effective technical 
support for high-precision wood defect detection. 

 
Table	2.	Comparison of Common Segmentation Techniques for Wood Defect Detection 

Segmentation 
Task Type 

Related 
Models 

Core Methodology Advantages Disadvantages 

Semantic 
Segmentation 

U-Net 

The encoder extracts 
features and the decoder 
restores the resolution by 

upsampling, with high-
level feature fusion 

achieved through skip 
connections. 

High 
precision in 
localization, 

simple 
structure, 

effective for 
small 

samples. 

Struggles to 
distinguish 
boundaries 

between similar 
objects and is 

sensitive to edge 
distortions. 

Instance 
Segmentation 

Mask R-
CNN 

Based on Faster R-CNN, 
Mask R-CNN adds a mask 

prediction branch and uses 
Region Proposal Networks 

(RPN) to generate 
candidate bounding boxes, 
followed by classification, 
bounding box regression, 

and pixel-level mask 
prediction. 

Can segment 
instances of 

the same 
class, 

accurate for 
dense 

targets and 
small 

defects. 

High 
computational 
load, requires 

large-scale and 
high-quality 

data, and is less 
effective on small 

target 
segmentation. 

 

2.3. Key	Optimization	Strategies	for	Enhancing	Detection	Performance	

Wood surface defect detection faces several challenges, including significant variations in 
target size, complex textures, strong background interference, and the high real-time 
performance demands of industrial environments. Defects typically occupy a small proportion 
of the image and are highly similar to the background texture, making it difficult for traditional 
convolutional networks to effectively extract features, which often leads to reduced accuracy in 
identifying small or low-contrast defects. To improve detection performance, researchers have 
proposed several strategies, including attention mechanisms, multi-scale feature fusion, model 
lightweighting, and data augmentation and transfer learning under small sample conditions. 

The attention mechanism mimics human visual selective focus, enabling the network to 
assign higher weights to key regions and important features, thereby enhancing feature 
representation. Channel attention mechanisms, such as SENet, highlight high-information 
channels through global information aggregation and weight learning, while suppressing low-
information channels. Spatial attention mechanisms generate spatial weight matrices to 
emphasize defect locations. Hybrid attention mechanisms, such as CBAM, combine channel and 
spatial attention to optimize feature representation across both dimensions. Coordinate 
attention further encodes horizontal and vertical position information, capturing long-range 
dependencies while preserving precise location information, making it particularly effective for 
detecting small, sparse defects (e.g., knots, insect holes, and cracks), and can be integrated with 
lightweight or efficient detection models. 
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Wood surface defects exhibit a large size variation, making it difficult for single-scale feature 
maps to effectively capture both small targets and large defects. Feature Pyramid Networks 
(FPN), through top-down paths and lateral connections, fuse deep high-semantic features with 
shallow high-resolution features, preserving both semantic information and spatial details. 
Shallow features aid in capturing the textures of small defects, while deep features provide 
semantic understanding of larger defects. Bidirectional Feature Pyramid Networks (BiFPN) 
build on this by introducing cross-scale weighted fusion, enabling bidirectional information 
flow and feature aggregation through learnable weights, which enhances the discernibility of 
small targets while suppressing shallow noise interference. The network structure of the 
feature fusion module is illustrated in Figure 4. 

 

 
             (a) FPN             (b) PANet                 (c) BiFPN 

Figure	4.	Network Structure of Feature Fusion Modules 
 
In industrial applications,deploymen is often constrained by computational resources. As a 

result, model compactness and inference speed become critical factors. Lightweight networks 
reduce computational complexity effectively through strategies such as replacing the backbone 
network, employing depthwise separable convolutions, and using channel shuffling. Network 
pruning removes redundant connections, quantization lowers the precision of weights and 
activations, and knowledge distillation trains the student model with guidance from a teacher 
model. These techniques enable lightweight models to maintain compact size while 
approximating the original performance, facilitating efficient real-time deployment. 

Moreover, deep learning methods heavily rely on large-scale data, while the number of wood 
defect samples is limited. Solutions include traditional data augmentation techniques (e.g., 
rotation, flipping, scaling, cropping, color jittering, noise addition), generating defect images 
using Generative Adversarial Networks (GANs), and employing transfer learning. Transfer 
learning transfers features learned from pre-trained models on large datasets (e.g., ImageNet) 
to the wood defect detection task, followed by fine-tuning to achieve high-performance training 
under small sample conditions. The integration of these approaches significantly enhances the 
accuracy, robustness, and industrial applicability of wood surface defect detection. 

2.4. Summary	 	

This chapter provides a comprehensive review of the theoretical framework for surface 
defect detection based on deep learning. First, it discusses the limitations of traditional methods 
and emphasizes the necessity of incorporating deep learning. Next, it presents the foundational 
principles of convolutional neural networks (CNNs) and their applications in wood defect 
detection, including object detection, semantic segmentation, and instance segmentation 
models. Finally, key techniques for enhancing model performance are summarized, such as 
attention mechanisms, multi-scale feature fusion, model lightweighting, and optimization 
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strategies for scenarios with limited data. This theoretical framework provides a solid 
foundation for subsequent research, which aims to address practical challenges such as 
complex texture backgrounds, small target defects, and real-time detection. 

3. CHALLENGES	AND	PROSPECTS	
Despite the significant progress made by deep learning in the detection of wood surface 

defects, several challenges remain in achieving industrial-scale application. This chapter 
provides a systematic analysis of the key issues in current research and explores future 
development trends. 

3.1. Major	Challenges	in	Current	Wood	Defect	Detection	

Although deep learning has achieved notable progress in the detection of wood surface 
defects, it still faces multiple challenges in industrial applications, hindering its widespread 
implementation in intelligent manufacturing and industrial production. First, the lack of high-
quality data remains a core bottleneck limiting model performance. The uneven distribution of 
wood defects—common defects such as knots account for more than 60% of defects, while 
critical defects like micro-cracks and insect holes comprise less than 5% — results in a 
significant reduction in the model's ability to recognize minority class defects. Additionally, the 
annotation process heavily relies on manual expertise, which is costly and lacks standardization, 
further limiting the construction of large-scale datasets and model training. Current mitigation 
strategies include traditional data augmentation, the use of Generative Adversarial Networks 
(GANs) to generate synthetic defect images, and transfer learning to leverage feature knowledge 
from other industrial domains. However, these methods still struggle to fully address the class 
imbalance problem, with detection performance for minority classes remaining limited. Future 
efforts should focus on building large-scale, multi-species, standardized datasets, promoting 
cross-domain data sharing, and exploring innovative sample generation methods based on 
diffusion models to meet the diverse defect detection needs of industrial environments. 

Illumination variations, surface reflections, and complex background interference 
significantly affect the model’s generalization ability in industrial settings. Research shows 
that model performance can degrade by more than 25% in different scenarios, primarily due to 
over-reliance on domain-sensitive features. Existing methods attempt to improve robustness 
through domain adaptation and attention mechanisms, but they still face difficulties in feature 
decoupling in complex textured backgrounds. Potential solutions include developing domain-
invariant feature learning architectures based on vision transformers, creating data 
augmentation strategies that incorporate physical priors, and establishing standardized testing 
benchmarks that cover multiple devices and environments to enhance model adaptability and 
reliability in heterogeneous industrial environments. 

Detecting minor defects also presents a critical challenge. Studies show that when defect 
areas occupy less than 0.1% of the image, the model’s recall rate significantly declines. While 
multi-scale feature fusion techniques can improve the response to small targets, they incur high 
computational costs, making it difficult to balance accuracy with real-time performance. To 
address this, researchers have attempted to incorporate super-resolution reconstruction 
techniques to enhance detail perception, use hierarchical attention mechanisms to suppress 
background interference, and build hybrid architectures based on CNNs and transformers for 
collaborative modeling of local and global features. Additionally, improvements such as 
adaptive receptive field mechanisms and lightweight feature pyramid networks can enhance 
the detection of small defects while maintaining real-time performance, thus meeting the high 
precision requirements in complex textured environments. 



World	Scientific	Research	Journal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Volume	11	Issue	10,	2025	

ISSN:	2472‐3703	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 DOI:	10.6911/WSRJ.202510_11(10).0008	

84 

Industrial applications also have stringent demands for real-time processing and model 
efficiency. Typically, the processing time for a single image needs to be under 100 ms, yet 
existing lightweight networks exhibit a significant decline in accuracy when compression rates 
exceed 40%. Optimization approaches include structured pruning, quantization, knowledge 
distillation, and neural architecture search. Combining edge computing with cloud 
collaboration, along with algorithm and hardware co-optimization, will contribute to efficient 
inference and meet the comprehensive requirements for speed, stability, and resource 
consumption in high-output production lines. 

3.2. Future	Development	Trends	and	Technological	Directions	

The future progress of wood surface defect detection will exhibit a trend of multidimensional 
integration and system optimization. At the data level, multimodal information fusion will be a 
key approach to enhance the model's perceptual ability. RGB images provide texture and color 
information, infrared imaging detects internal material temperature and potential defect 
signals, and depth images offer structural and geometric features. Multimodal collaborative 
modeling can significantly enhance defect detection robustness, especially in industrial 
environments with varying lighting conditions or strong surface reflections. Additionally, self-
supervised learning and few-shot learning strategies can extract useful features under limited 
labeled data conditions, reducing labor costs and improving model adaptability to new tree 
species or environments. 

At the algorithmic level, deep learning networks are evolving towards stronger feature 
modeling capabilities and global information perception. Vision Transformers and their 
derivatives enable long-range dependency feature modeling, effectively capturing the global 
correlation between complex wood surface textures and subtle defects. Hybrid architectures 
combining CNNs and Transformers provide collaborative representations of local details and 
global context, improving model stability in detecting small defects and complex backgrounds. 
Techniques such as multi-scale feature fusion, attention mechanisms, and adaptive receptive 
fields will continue to be optimized to address challenges such as large defect size variation, 
complex textures, and strong background interference, achieving high-precision recognition of 
various defect types, including micro-cracks, wormholes, knots, and decay. Algorithm 
lightweighting and model compression technologies will ensure real-time deployment on edge 
devices and industrial production lines, balancing accuracy and processing efficiency. 

At the system level, end-to-end intelligent inspection pipelines will gradually integrate the 
complete process from image acquisition, preprocessing, and defect recognition to 
explainability analysis, enabling automation and transparency in industrial quality control. The 
integration of cloud and edge computing architectures will facilitate large-scale data processing 
and real-time detection, meeting the speed and stability requirements of high-throughput 
production lines. Furthermore, cross-domain knowledge transfer, multimodal information 
sharing, and algorithm-hardware co-optimization are expected to further enhance model 
generalization capabilities, providing reliable data support for industrial decision-making. With 
the continuous evolution of deep learning algorithms, the proliferation of computational 
resources, and the growing demand for industrial applications, wood surface defect detection 
is poised to transition from laboratory research to industrial application, providing solid 
technical support for smart manufacturing and the green building materials industry. 
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