Recent Developments in Lorentz Microscopy
DOI:
https://doi.org/10.6911/WSRJ.202507_11(7).0005Keywords:
LTEM, VFET, MBIR, In situ sample holder, Spherical aberration correction, AI.Abstract
Lorentz transmission electron microscopy (LTEM) has gradually evolved into a quantitative technique for analyzing the magnetization state of samples. This review presents latest advances of imaging techniques, including using spherical aberration correction to enhance spatial resolution, the application of Fresnel-variant 4D LTEM to improve temporal resolution, and the development of novel in situ sample holders. Discussion on vector field electron tomography (VFET), which enables three-dimensional reconstruction of magnetization information is also included. In addition, it provides a brief overview of how these advancements have been applied in recent material studies.
Downloads
References
[1] Petford-Long, A. K., & De Graef, M. (2012). Characterization of materials, Lorentz microscopy. In Characterization of Materials, John Wiley & Sons, 1787–1801.
[2] Hale, M. E., Fuller, H. W., & Rubenstein, H. (1959). Magnetic domain observations by electron microscopy. Journal of Applied Physics, 30, 789–791.
[3] Boersch, H., & Raith, H. (1959). Elektronmikroskopische Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten. Naturwissenschaften, 46, 574.
[4] Phatak, C., & Gürsoy, D. (2015). Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography. Ultramicroscopy, 150, 54–64.
[5] Li, X. Z., Deng, F., Ni, C., & Chen, Z. G. (2015). Advances in in-situ transmission electron microscopy. Journal of Electron Microscopy, 32(4), 225–229.
[6] Wolf, D., Biziere, N., Sturm, S., Reyes, D., Wade, T., Niermann, T., . . . Lubk, A. (2019). Holographic vector field electron tomography of three-dimensional nanomagnets. Communications Physics, 2(1), 87.
[7] Phatak, C., Petford-Long, A. K., & De Graef, M. (2016). Recent advances in Lorentz microscopy. Current Opinion in Solid State and Materials Science, 20(2), 107–114.
[8] Phatak, C., Petford-Long, A. K., Heinonen, O., Tanase, M., & De Graef, M. (2011). Nanoscale structure of the magnetic induction at monopole defects in artificial spin-ice lattices. Physical Review B, 83(17), 174431.
[9] Yang, X., Yao, Y., Tian, H., & Duan, X. (2013). Development of the double-tilt TEM holder with magnetic field for in-situ Lorentz microscopy. Journal of Chinese Electron Microscopy Society, 32(5), 416–419.
[10] Arita, M., Tokuda, R., Hamada, K., & Takahashi, Y. (2014). Development of TEM holder generating in-plane magnetic field used for in-situ TEM observation. Materials Transactions, 55(3), 403–409.
[11] Park, H. S., Baskin, J. S., & Zewail, A. H. (2010). 4D Lorentz electron microscopy imaging: Magnetic domain wall nucleation, reversal, and wave velocity. Nano Letters, 10(9), 3796–3803.
[12] Berruto, G., Madan, R., Murooka, Y., Vanacore, G. M., Rajeswari, B., Pomarico, E., … & Carbone, F. (2018). Laser-induced skyrmion writing and erasing in an ultrafast cryo-Lorentz transmission electron microscope. Physical Review Letters, 120(11), 117201.
[13] Zhang, X., He, Y., Brugnone, N., Perlmutter, M., & Hirn, M. (2021). MagNet: A neural network for directed graphs. arXiv.
[14] Prabhat, K. C., Mohan, K. A., Phatak, C., Bouman, C., & De Graef, M. (2017). 3D reconstruction of the magnetic vector potential using model-based iterative reconstruction. Ultramicroscopy, 181, 143–150.
[15] Silinga, A., Kovács, A., McVitie, S., Dunin-Borkowski, R. E., Fallon, K., & Almeida, T. P. (2024). Model-based iterative reconstruction of three-dimensional magnetisation in a nanowire structure using electron holographic vector field tomography. arXiv.
[16] McCray, A. R. C., Li, Q., Liu, J., Sinha, S., Oh, Y., Müller, D. A., & Hovden, R. (2023). Single-image phase retrieval in Lorentz transmission electron microscopy using deep generative priors. arXiv Preprint.
[17] McCray, A. R. C., Sinha, S., Li, Q., Liu, J., Oh, Y., Müller, D. A., & Hovden, R. (2024). Simulation-trained machine learning models for quantitative analysis of magnetic skyrmions in Lorentz TEM. APL Machine Learning, 2(2), 026120.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 World Scientific Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.