Recent Developments in Lorentz Microscopy

Authors

  • Qinwen Xue

DOI:

https://doi.org/10.6911/WSRJ.202507_11(7).0005

Keywords:

LTEM, VFET, MBIR, In situ sample holder, Spherical aberration correction, AI.

Abstract

Lorentz transmission electron microscopy (LTEM) has gradually evolved into a quantitative technique for analyzing the magnetization state of samples. This review presents latest advances of imaging techniques, including using spherical aberration correction to enhance spatial resolution, the application of Fresnel-variant 4D LTEM to improve temporal resolution, and the development of novel in situ sample holders. Discussion on vector field electron tomography (VFET), which enables three-dimensional reconstruction of magnetization information is also included. In addition, it provides a brief overview of how these advancements have been applied in recent material studies.

Downloads

Download data is not yet available.

References

[1] Petford-Long, A. K., & De Graef, M. (2012). Characterization of materials, Lorentz microscopy. In Characterization of Materials, John Wiley & Sons, 1787–1801.

[2] Hale, M. E., Fuller, H. W., & Rubenstein, H. (1959). Magnetic domain observations by electron microscopy. Journal of Applied Physics, 30, 789–791.

[3] Boersch, H., & Raith, H. (1959). Elektronmikroskopische Abbildung Weißscher Bezirke in dünnen ferromagnetischen Schichten. Naturwissenschaften, 46, 574.

[4] Phatak, C., & Gürsoy, D. (2015). Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography. Ultramicroscopy, 150, 54–64.

[5] Li, X. Z., Deng, F., Ni, C., & Chen, Z. G. (2015). Advances in in-situ transmission electron microscopy. Journal of Electron Microscopy, 32(4), 225–229.

[6] Wolf, D., Biziere, N., Sturm, S., Reyes, D., Wade, T., Niermann, T., . . . Lubk, A. (2019). Holographic vector field electron tomography of three-dimensional nanomagnets. Communications Physics, 2(1), 87.

[7] Phatak, C., Petford-Long, A. K., & De Graef, M. (2016). Recent advances in Lorentz microscopy. Current Opinion in Solid State and Materials Science, 20(2), 107–114.

[8] Phatak, C., Petford-Long, A. K., Heinonen, O., Tanase, M., & De Graef, M. (2011). Nanoscale structure of the magnetic induction at monopole defects in artificial spin-ice lattices. Physical Review B, 83(17), 174431.

[9] Yang, X., Yao, Y., Tian, H., & Duan, X. (2013). Development of the double-tilt TEM holder with magnetic field for in-situ Lorentz microscopy. Journal of Chinese Electron Microscopy Society, 32(5), 416–419.

[10] Arita, M., Tokuda, R., Hamada, K., & Takahashi, Y. (2014). Development of TEM holder generating in-plane magnetic field used for in-situ TEM observation. Materials Transactions, 55(3), 403–409.

[11] Park, H. S., Baskin, J. S., & Zewail, A. H. (2010). 4D Lorentz electron microscopy imaging: Magnetic domain wall nucleation, reversal, and wave velocity. Nano Letters, 10(9), 3796–3803.

[12] Berruto, G., Madan, R., Murooka, Y., Vanacore, G. M., Rajeswari, B., Pomarico, E., … & Carbone, F. (2018). Laser-induced skyrmion writing and erasing in an ultrafast cryo-Lorentz transmission electron microscope. Physical Review Letters, 120(11), 117201.

[13] Zhang, X., He, Y., Brugnone, N., Perlmutter, M., & Hirn, M. (2021). MagNet: A neural network for directed graphs. arXiv.

[14] Prabhat, K. C., Mohan, K. A., Phatak, C., Bouman, C., & De Graef, M. (2017). 3D reconstruction of the magnetic vector potential using model-based iterative reconstruction. Ultramicroscopy, 181, 143–150.

[15] Silinga, A., Kovács, A., McVitie, S., Dunin-Borkowski, R. E., Fallon, K., & Almeida, T. P. (2024). Model-based iterative reconstruction of three-dimensional magnetisation in a nanowire structure using electron holographic vector field tomography. arXiv.

[16] McCray, A. R. C., Li, Q., Liu, J., Sinha, S., Oh, Y., Müller, D. A., & Hovden, R. (2023). Single-image phase retrieval in Lorentz transmission electron microscopy using deep generative priors. arXiv Preprint.

[17] McCray, A. R. C., Sinha, S., Li, Q., Liu, J., Oh, Y., Müller, D. A., & Hovden, R. (2024). Simulation-trained machine learning models for quantitative analysis of magnetic skyrmions in Lorentz TEM. APL Machine Learning, 2(2), 026120.

Downloads

Published

2025-07-07

Issue

Section

Articles

How to Cite

Xue, Q. (2025). Recent Developments in Lorentz Microscopy. World Scientific Research Journal, 11(7), 43-49. https://doi.org/10.6911/WSRJ.202507_11(7).0005