Research Progress of Gold-based Catalysts for Hydrogen Evolution Reaction

Authors

  • Xiaofan Yang

DOI:

https://doi.org/10.6911/WSRJ.202511_11(11).0001

Keywords:

Gold-based catalysts, Hydrogen evolution reaction, Alloying strategy, Carrier synergistic, Atomically precise construction

Abstract

The hydrogen evolution reaction (HER) is a critical step in the process of electrolytic water splitting for hydrogen production. The effectiveness, durability and economy of electrocatalysts are necessary prerequisites for meeting performance expectations. The unique electronic structure of gold enables gold-based catalysts to exhibit excellent properties in hydrogen evolution reactions. This review outlines the fundamental mechanisms of HER and the characteristics of gold-based materials. Furthermore, the effects of alloying strategy, carrier synergistic, and atomically precise construction of gold are deliberated. Finally, the future prospects involved in this process are discussed. We hope that this review can provide valuable insights for the design and development of efficient and stable catalysts for applications in electrochemical hydrogen production and other related fields.

Downloads

Download data is not yet available.

References

[1] X. Zhu, L. Chen, Y. Liu, Z. Tang, Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: Progress and perspectives, Polyoxometalates, 2 (2023) 9140031.

[2] Y. Xu, X. Zhang, Y. Liu, R. Wang, Y. Yang, J. Chen, A critical review of research progress for metal alloy materials in hydrogen evolution and oxygen evolution reaction, Environmental science and pollution research international, 30 (2023) 11302-11320.

[3] Y. Yuan, J. Li, Y. Zhu, Y. Qiao, Z. Kang, Z. Wang, X. Tian, H. Huang, W. Lai, Water in Electrocatalysis, Angew. Chem. Int. Ed., 64 (2025) e202425590.

[4] S. Pattaweepaiboon, P. Samarungkasut, P. Iamprasertkun, P. Arkasalerks, K. Nueangnoraj, A. Boonchun, A. Pumsantier, W. Hirunpinyopas, W. Sirisaksoontorn, Single-Atom to Ultrasmall Au Nanoparticles Anchored on NiFe Layered Double Hydroxide as Catalyst for Oxygen and Hydrogen Evolution Reactions, ACS Applied Nano Materials, 8 (2024) 438-448.

[5] E. Biehler, Q. Quach, T.M. Abdel-Fattah, Gold Nanoparticle Mesoporous Carbon Composite as Catalyst for Hydrogen Evolution Reaction, Molecules, 29 (2024).

[6] A. Laghrissi, M. Es-Souni, Au-Nanorods Supporting Pd and Pt Nanocatalysts for the Hydrogen Evolution Reaction: Pd Is Revealed to Be a Better Catalyst than Pt, Nanomaterials, 13 (2023).

[7] M. El-Shafie, Hydrogen production by water electrolysis technologies: A review, Results in Engineering, 20 (2023) 101426.

[8] J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Recent advances in electrocatalytic hydrogen evolution using nanoparticles, Chemical reviews, 120 (2020) 851-918.

[9] E. Biehler, Q. Quach, T.M. Abdel-Fattah, Gold Nanoparticles AuNP Decorated on Fused Graphene-like Materials for Application in a Hydrogen Generation, Materials, 16 (2023).

[10] D. Deepak, V. Vuruputuri, G. Bhattacharya, J.A. McLaughlin, S.S. Roy, Fabrication of Gold Nanoparticles Embedded Laser-Induced Graphene (LIG) Electrode for Hydrogen Evolution Reaction, C, 9 (2023) 118.

[11] B.H. Alshammari, H. Begum, F.A. Ibrahim, M.S. Hamdy, T.A. Oyshi, N. Khatun, M.A. Hasnat, Electrocatalytic Hydrogen Evolution Reaction from Acetic Acid over Gold Immobilized Glassy Carbon Surface, Catalysts, 13 (2023) 744.

[12] A. Zhu, L. Qiao, K. Liu, G. Gan, C. Luan, D. Lin, Y. Zhou, S. Bu, T. Zhang, K. Liu, T. Song, H. Liu, H. Li, G. Hong, W. Zhang, Rational design of precatalysts and controlled evolution of catalyst-electrolyte interface for efficient hydrogen production, Nat Commun, 16 (2025) 1880.

[13] S. AlAreeqi, C. Ganley, D. Bahamon, K. Polychronopoulou, P. Clancy, L.F. Vega, Rational design of optimal bimetallic and trimetallic nickel-based single-atom alloys for bio-oil upgrading to hydrogen, Nat Commun, 16 (2025) 2639.

[14] T. Kwon, A. Yu, S.-j. Kim, M.H. Kim, C. Lee, Y. Lee, Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acidic water splitting, Applied Surface Science, 563 (2021) 150293.

[15] Z. Li, C. Yu, Y. Kang, X. Zhang, Y. Wen, Z.K. Wang, C. Ma, C. Wang, K. Wang, X. Qu, M. He, Y.W. Zhang, W. Song, Ultra-small hollow ternary alloy nanoparticles for efficient hydrogen evolution reaction, National science review, 8 (2021) nwaa204.

[16] Z. Liu, Y. Jiang, Z. Zhang, X. Wang, K. Liu, Z. Qiao, M. Liu, S. Zhang, Z. Mu, Q. Zhang, C. Gao, Synthesis of noble/non-noble metal alloy nanostructures via an active-hydrogen-involved interfacial reduction strategy, Nature Synthesis, 2 (2023) 119-128.

[17] D.K. Yadav, R. Gupta, V. Ganesan, P.K. Sonkar, M. Yadav, Gold Nanoparticles Incorporated in a Zinc‐Based Metal‐Organic Framework as Multifunctional Catalyst for the Oxygen Reduction and Hydrogen Evolution Reactions, ChemElectroChem, 5 (2018) 2612-2619.

[18] Jianping Shi, Donglin Ma, G.-F. Han, Directly Grown Monolayer MoS2 on Au Foils As Efficient Hydrogen Evolution Catalysts.

[19] F.L. Ling, T.W. Zhou, X.Q. Liu, W. Kang, W. Zeng, Y.X. Zhang, L. Fang, Y. Lu, M. Zhou, Electric field tuned MoS(2)/metal interface for hydrogen evolution catalyst from first-principles investigations, Nanotechnology, 29 (2018) 03LT01.

[20] Shuai- Peng Chen, Jiajia Zhang, Qi- Xiang Cai, Yubing Si, Ying- Xue Yuan, S.-Q. Zang, Gold clusters assembled homochiralhelical microbowties, SCIENCE ADVANCE S, 11 (2025) eadx9526.

[21] T.D. Tran, M.T.T. Nguyen, H.V. Le, D.N. Nguyen, Q.D. Truong, P.D. Tran, Gold nanoparticle as an outstanding catalyst for the hydrogen evolution reaction, (2018).

[22] N. Cheng, S. Stambula, D. Wang, M.N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.K. Sham, L.M. Liu, G.A. Botton, X. Sun, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction, Nat Commun, 7 (2016) 13638.

[23] T.D. Le, D.S. Kim, T.V. Tran, B. Urupalli, G.S. Shin, G.J. Oh, Y.T. Yu, Electronic Structure Engineering of Pt-Ni Alloy NPs by Coupling of Gold Single Atoms on N-Doped Carbon for Highly Efficient Oxygen Reduction Reaction and Hydrogen Evolution Reaction, Small, 20 (2024) e2311971.

[24] H. Guo, S. Gu Kang, S. Geol Lee, First-principles Density Functional Theory Elucidation of the Hydrogen Evolution Reaction on TM-promoted TiC(2) (TM=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au), Chemphyschem : a European journal of chemical physics and physical chemistry, 24 (2023) e202200823.

[25] Qichen Wang, Yongpeng Lei, Yuchao Wang, Yi Liu, Chengye Song, Jian Zeng, Yaohao Song, Xidong Duan, Dingsheng Wang, Y. Li, Atomic-scale engineering of chemical vapor deposition-grown 2D transition metal dichalcogenides for electrocatalysis, Energ Environ Sci, 13 (2020) 1593-1616.

[26] Q. Quan, Y. Zhang, H. Li, W. Wang, P. Xie, D. Chen, W. Wang, Y. Meng, D. Yin, Y. Li, D. Song, L. Chen, S. Li, C. Yang, T. Yanagida, C.Y. Wong, S. Yip, J.C. Ho, Atomic-scale self-rearrangement of hetero-metastable phases into high-density single-atom catalysts for the oxygen evolution reaction, Nat Commun, 16 (2025) 2908.

[27] T. Kawawaki, Y. Negishi, Gold Nanoclusters as Electrocatalysts for Energy Conversion, Nanomaterials, 10 (2020).

[28] S. Guan, Y. Liu, H. Zhang, R. Shen, H. Wen, N. Kang, J. Zhou, B. Liu, Y. Fan, J. Jiang, B. Li, Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane, Adv Sci (Weinh), 10 (2023) e2300726.

[29] T. Tabakova, Recent Advances in Design of Gold-Based Catalysts for H2 Clean-Up Reactions, Front Chem, 7 (2019) 517.

[30] Y. Sun, Y. Zang, B. He, G. Lin, Z. Liu, L. Yang, L. Chen, L. Li, X. Liu, C. Shen, H. Qiu, Soft nanoforest of metal single atoms for free diffusion catalysis, Sci Adv, 11 (2025) eadq2948.

[31] X. Chen, X.T. Wang, J.B. Le, S.M. Li, X. Wang, Y.J. Zhang, P. Radjenovic, Y. Zhao, Y.H. Wang, X.M. Lin, J.C. Dong, J.F. Li, Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction, Nat Commun, 14 (2023) 5289.

[32] M.A. Qadeer, X. Zhang, M.A. Farid, M. Tanveer, Y. Yan, S. Du, Z.-F. Huang, M. Tahir, J.-J. Zou, A review on fundamentals for designing hydrogen evolution electrocatalyst, Journal of Power Sources, 613 (2024) 234856.

[33] J. Huang, R. Wang, H. Sheng, X. Zhu, R. Dominic Ross, D. Hua, L. Lin, Y. Li, Q. Zhang, L. Gu, X. Wang, P. Xu, J. Lu, S. Jiang, J. Han, B. Song, S. Jin, Isotope-dependent Tafel analysis probes proton transfer kinetics during electrocatalytic water splitting, Nature chemistry, (2025).

[34] P. Anand, S. Kumar, M. Birare, C.-H. Tsai, S.-H. Ding, Y.-P. Fu, Ru-CuO/NiMn-LDH heterostructured electrocatalyst for urea oxidation and hydrogen evolution reactions, Journal of Alloys and Compounds, 1032 (2025) 181208.

[35] S. Ke, R. Mi, X. Min, X. Zhu, C. Wu, X. Li, B. Yang, X. Wu, Y. Liu, Z. Huang, M. Fang, Strong-weak dual interface engineered electrocatalyst for large current density hydrogen evolution reaction, Communications Materials, 6 (2025).

Downloads

Published

2025-11-17

Issue

Section

Articles

How to Cite

Yang, X. (2025). Research Progress of Gold-based Catalysts for Hydrogen Evolution Reaction. World Scientific Research Journal, 11(11), 1-10. https://doi.org/10.6911/WSRJ.202511_11(11).0001